Abstract

To identify stable cutting conditions with a high depth of cut, stability lobe diagrams are used. In order to predict these diagrams, frequency response functions (FRF) at the tool tip are required for every tool, holder and machine combination. To reduce the number of experimental tests, receptance coupling substructure analysis (RSCA) is proposed in the literature. In order to take full advantage of this method, contact parameters between holder and tool must be known. To identify these parameters this paper presents a new method based on free-free measurements. The obtained contact parameters led to good results for various tool lengths. Based on this, an extensive investigation is performed for the ER32 holder interface. Afterwards, the RCSA method is tested. Therefore, different spindle–holder–tool assemblies are modeled for two machine tools. Prediction and measurement of obtained tool-tip FRF shows a good match, especially for the frequency position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.