Abstract

Electronic nicotine delivery systems (ENDS), or e-cigarettes, are emerging tobacco products that produce aerosols by heating e-liquids, which most often consist of propylene glycol and vegetable glycerin along with various flavoring compounds, bypassing the combustion that occurs in the use of traditional tobacco cigarettes. These products have seen a drastic increase in popularity in recent years both as smoking cessation devices as well as among younger generations, due in large part to the widespread perception among consumers that e-cigs are significantly less harmful to health than traditional tobacco cigarettes. Due to the novelty of ENDS as well as their rapidly increasing use, research into biomarkers of e-cig exposure and toxicity have lagged behind their popularity, leaving important questions about their potential toxicity unanswered. Research into potential biomarkers of acute and chronic e-cig use, and e-cigarette- or vaping-associated lung injury is necessary for informing both clinical and regulatory decision-making. We aim to provide an updated review of recent research into potential circulating, genomic, transcriptomic, and epigenetic biomarkers of exposure to and toxicity of e-cigs. We additionally highlight research areas that warrant additional study to gain a better understanding of health risks associated with ENDS use, as well as to provide validation of existing data and methods for measuring and analyzing e-cig-associated biomarkers in human and animal biofluids, tissues, and cells. This review also highlights ongoing efforts within the WNY Center for Research on Flavored Tobacco for research into novel biomarkers in extracellular vesicles that may be associated with short- and long-term ENDS use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.