Abstract
The frequency and periodicity of preserved graded turbidite cycles in submarine fans in the Coral Sea and Sea of Japan are correlated to times of tectonic uplift in response to major collisions in the Owen-Stanley Range of Papua and the Hida Range of Japan, respectively. Large frequencies and shorter-term periodicities of turbidites at DSDP Site 210 were coeval with early Pliocene maximum tectonic-uplift rates which occurred in the Owen-Stanley Range in response to obduction. Similarly, large frequencies and shorter-term periodicities of turbidites at Site 299 (Toyama Submarine Fan) were coeval with the late Pleistocene uplift in the Hida Range; this uplift of 1000 to 1500 m occurred in response to collision tectonics. In both cases, trends of increasing frequencies and towards shorter-term periodicities of preserved turbidite depositional events correlate to trends of increasing rates of tectonic uplift.The role of sea-level fluctuations on changing denudation rates in these two collision zones is secondary. At Site 210, larger frequencies and short-term periodicities of preserved turbidites were coeval with early Pliocene high stands of sea level, whereas at Site 299, Pleistocene sea-level fluctuations are considered minor because at low stands of sea level, both relief and denudation rates were increased by about ten to 14%. At Site 286 (New Hebrides Basin), Eocene turbidite deposition is coeval with high stands of sea level, whereas at Site 297 (Northern Shikoku Basin), turbidite deposition was coeval with both rising and falling sea level.Analysis of both frequency and periodicity of turbidites by fan subenvironment at Site 299 indicates a record of continuous deposition, and maintainance of frequency and periodicity trends controlled by tectonic uplift. Late Pleistocene channel and overbank deposits showed periodicity differences of less than 28% of an order of magnitude, whereas Miocene-Pliocene overbank and distal turbidite periodicities differed by a 19% order of magnitude. Greater differences in magnitude occurred between distal turbidites or early Pleistocene age and Pliocene age than between Miocene-Pliocene overbank and distal turbidite deposition with a magnitude difference of 860%. These findings suggest that shifting depocenters and differences in sedimentation history in subenvironments of submarine fans are secondary to the role of tectonic uplift in this particular case.The minimal rate of tectonic uplift required to generate deep-sea fan turbidities appears to be approximately 400 m/million years. This figure is tentative and is based on very few observation points.Frequency and periodicity of preserved turbidite cycles in submarine fans in active continental margins and ancient counterparts should provide an independent measurement of rates and timing of tectonic uplift, particularly in collision terrains. Because this sediment parameter is a record of a single process from a single source and a record of “event stratigraphy”, its usage is preferable over standard and bulk sediment accumulation rates determined from age depth curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.