Abstract

Wearable electronic textiles (e-textiles) have the ability to sense, respond, and adjust in multiple environmental stimuli, which can interact with the human brain's capability for cognition, reasoning, and activation. Moreover, they have the ability to generate and store energy, keep track of the wearer's health, and react to varying situations. Conductive polymers, metal-wrapped yarns, as well as, carbon nanotubes with silver, copper, and gold nanoparticles are used in a variety of yarn structures to design circuits, switches, and fabrics directly. Knitting, stitching, embroidery, and other integration techniques are used to combine electronic components and electrical interconnects to develop flexible electronic clothing and smart wearables. For this purpose, controlled sensors, actuators, conductive embroidered or printed fabric, planer yarn, data transfer devices, conductive inks, electromagnetic shielding, power supply, and other components are incorporated in e-textiles design. Despite the progress made so far, wearable e-textiles still, lack the required performance and device features along with the issues related to complex fabrication techniques, end-of-life processing and sustainability. Hence, this review aims to discuss the recent developments, which address the future challenges concerning electronic (e-textiles).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call