Abstract
Abstract:: In recent years, research and development efforts have been heavily focused on conductive diamond electrodes for electrochemical applications. Such initiatives may have been spurred by their broad potential window, low background current, chemical inertness, and mechanical robustness. Compared to other carbon-based materials, conducting diamond can oxidize several analytes before the breakdown of water in aqueous electrolytes. Since the evolution of oxygen and hydrogen does not obstruct the analysis, this is significant for the detection and/or identification of species in solution. As a result, conductive diamond electrodes expand the application of electrochemical detection and make it possible to use them for analytes that are incompatible with traditional electrode materials. Fabricating boron-doped diamond films via chemical vapor deposition on different substrates is of special interest. This article highlights the therapeutic and electroanalytical applications of boron-doped diamond electrodes in various aspects in addition to the synthetic strategies to obtain Boron Doped Diamond Electrodes (BDDE), the cost-effectiveness of BDD and its in-vivo compatibility that will help the analytical researchers to learn almost everything about the previous studies done on BDDE and encourage them to work more efficiently in this research field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.