Abstract

In recent years, nanomaterials of different shape, size, and composition have been prepared and characterized, such as gold and silver nanoparticles, quantum dots, mesoporous silica nanoparticles, carbon nanomaterials, and hybrid nanocomposites. Because of their unique physical and chemical properties, these nanomaterials are increasingly used in point-of-care testing (POCT) to improve analytical performance and simplify detection process. They are used either as carriers for immobilizing biorecognition elements, or as labels for signal generation, transduction and amplification. In this commentary, we highlight recent POCT technologies that employ nanotechnology for the analysis of disease biomarkers, including small-molecule metabolites, enzymes, proteins, nucleic acids, cancer cells, and pathogens. Recent advances in lateral flow tests, printable electrochemical biosensors, and microfluidics-based devices are summarized. Existing challenges and future directions are also discussed.

Highlights

  • Point-of-care testing (POCT) refers to medical diagnostic tests performed near the place and time of patient care

  • In the presence of target analyte, the target molecules are captured by nanogold-labeled antibodies and bind with detection antibodies on the test line

  • Gold nanoparticles (AuNPs) are coated with detection antibodies, and the target small molecules in liquid sample compete with immobilized analyte-protein conjugates on the test line for binding to AuNP-labeled detection antibodies

Read more

Summary

INTRODUCTION

Point-of-care testing (POCT) refers to medical diagnostic tests performed near the place and time of patient care. Nanomaterials of different shape, size and composition have been prepared and characterized, such as gold and silver nanoparticles, quantum dots, mesoporous silica nanoparticles, carbon nanomaterials including carbon nanotubes (CNTs) and graphene, and hybrid nanocomposites (Reddy et al, 2012; Saha et al, 2012; Yin and Talapin, 2013; Hong et al, 2015) Compared with their bulk counterparts, nanomaterials have some unique physical and chemical properties, such as large surface area, excellent biocompatibility, and specific catalytic activity, which make nanomaterials an excellent candidate for manufacturing detection probes (Colombo et al, 2012; Jans and Huo, 2012). We will discuss applications of nanomaterials in biosensors for POCT and how they can improve the analytical performance (Figure 1)

CURRENT POCT TECHNOLOGIES
Lateral Flow Strips
Printable Electrochemical Biosensors
Devices With Precise Fluid Control
CONCLUDING REMARKS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.