Abstract
Abstract: Recently memristors have emerged as a form of nonvolatile memory that is based on the principle of ion transport in solid electrolytes under the impact of an external electric field. It is perceived as one of the key elements to building next-generation computing systems owing to its peculiar resistive switching characteristics. The switching mechanism in a memristor is mainly governed by filamentary conduction. Further, it can be employed as a memory as well as a logic element, which makes it an ideal candidate for building innovative computer architecture. Moreover, it is capable of mimicking the characteristics of biological synapses, which makes it an ideal candidate for developing a Neuromorphic system. In this review to begin with the switching mechanism of the memristor, primarily focusing on filamentary conduction, is discussed. Few SPICE models of memristor are reviewed, and their critical comparison is performed, which are widely used to build computing systems. An in-depth study on the various crossbar memory architecture augmented with memristors is reviewed. Finally, the application of memristors in neuromorphic computing and hardware implementation of Artificial Neural Networks (ANN) employing memristors is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.