Abstract
Background and Objectives: This scoping review investigates recent trends in adipose tissue-derived injectable therapies for osteoarthritis (OA) in animal models, focusing on minimally manipulated or lightly processed adipose tissue. By evaluating and examining the specific context in which these therapies were investigated across diverse animal OA models, this review aims to provide valuable insights that will inform and guide future research and clinical applications in the ongoing pursuit of effective treatments for osteoarthritis. Materials and Methods: This research conducted a comprehensive literature review of PubMed and Embase to determine studies about minimally manipulated adipose tissue-derived injectable therapies for osteoarthritis investigated using animal models. The primary search found 530 results. After excluding articles that focused on spontaneous osteoarthritis; on transfected, preconditioned, cultured, or co-cultured adipose-derived stem cells; and articles with unavailable full text, we included 11 articles in our review. Results: The examined therapies encompassed mechanical micro-fragmented adipose tissue (MFAT) and stromal vascular fraction (SVF) obtained via collagenase digestion and centrifugation. These interventions were evaluated across various animal models, including mice, rats, rabbits, and sheep with induced OA. Notably, more studies concentrated on surgically induced OA rather than chemically induced OA. The assessment of these therapies focused on elucidating their protective immunomodulatory, anti-inflammatory, and chondroregenerative potential through comprehensive evaluations, including macroscopic assessments, histological analyses, immunohistochemical examinations, and biochemical assays. Conclusions: This review provides a comprehensive analysis of adipose tissue-derived injectable therapies for osteoarthritis across diverse animal models. While revealing potential benefits and insights, the heterogeneity of data and the limited number of studies highlight the need for further research to formulate conclusive recommendations for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.