Abstract

Photoelectrochemical (PEC) water splitting, and carbon dioxide (CO2) utilization devices have attracted immense attention as sustainable technologies for the generation of hydrogen (H2) fuel and value-added chemicals feedstock. Among numerous semiconductors, bismuth vanadate (BiVO4) has emerged as a promising photoanode owing to its fascinating features such as high chemical stability, straddling band alignment with water redox levels, eco-friendly, and cost-effectiveness. However, sluggish oxidation kinetics, photo-corrosive nature, low electronic conductivity, and short carrier diffusion length limit its commercialization on the PEC horizon. To mitigate these inadequacies, several strategies have emerged such as novel heterojunctions, doping with unique materials, interface modulation, morphology, facet orientation, co-catalyst loading for surface engineering, etc. to realize the outstanding cost-to-efficiency ratios and long-term stability of PEC devices. The review highlights the recent advancement in BiVO4-based photoanodes in last five years (2018–2022) and their utilization in the single absorber and unexplored tandem PEC systems towards boosted water splitting and CO2 reduction. A discussion on theoretical studies of BiVO4-based PEC systems elucidates the microscopic mechanism of promotion effect of the bulk/interface/surface strategies on surface catalysis as well as interfacial charge transfer in boosting oxidation kinetics. Moreover, this review addresses the versatility of the BiVO4-based photoanode for the novel yet commercially viable PEC applications. This review will provide a broad avenue in designing highly durable, and scalable BiVO4-based systems toward various PEC energy conversion devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call