Abstract

Perovskite oxides (ABO3 ) have attracted comprehensive interest for wide range of functional applications (especially for chemical catalysis) due to their high design flexibility, controllable vacancies sites creation, abundant chemical properties, and stable crystal structure. Herein, the previous research and potential development of ABO3 through adjusting the vacancy at different sites (A-site, B-site, and O-site) to enhance catalytic performance are systematically analyzed and generalized. Briefly, the ABO3 with different vacancies sites prepared by multifarious direct and indirect methods, accompanied with the improved physical-chemical properties, endow them with distinct and intensified development of catalysis application. In addition, the impressive optimization proved by the vacancies sites adjustment over the ABO3 is studied to continuously facilitate the advance in some common catalysis reactions, further expanding to other optimized functional applications. At last, the constructive suggestions for fine regulation and analysis of vacancies sites over ABO3 are also put forward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call