Abstract
A study on the modern dynamics and shoreline changes from 1954 to 2014 of the Molise coast (central Adriatic Sea) has been carried out. Short to long-term shoreline changes and associated surface area variations have been assessed in GIS environment for the study coast, subdivided in nine coastal segments (S1-S9), by using 100-m regularly spaced transects. In addition, the possible influence of natural and anthropogenic factors, especially of climatic variability and engineered shoreline defense structures, has been investigated. The Molise coast has experienced notable long-term erosion (period 1054-2014) that caused an overall coastal land loss of approximately 940,000 m2. Erosion was, yet, limited to coastal segments S1 and S7, nearest to the mouths of major rivers, namely Trigno and Biferno, while the major part of the study coast has remained essentially stable or even advanced. Increased shoreline protection by defense structures has generally favoured shoreline stability and frequently generated shoreline advance, except for segments S1 and S7. Observed differences in shoreline change rates over time at the decadal to interannual scale, have not find a response in the analysis of available data on meteo-marine conditions of the Molise coast and climate variability indices, pointing out the need to improve knowledge on meteomarine conditions and on climatic variability forcing of the study area. From 2004 to 2014, the Molise shoreline remained essentially stable. Nonetheless, most recent shoreline changes (period 2011-2014) and modern shoreline dynamics indicate that erosion has become more widespread, involving at least part of segments S2-S3 and S8-S9, located south of the river mouth segments. The localized long-term shoreline retreat and most recent shoreline erosion appear to be primarily related to channel adjustments of the Biferno and Trigno rivers that occurred since the 1950s under the control of human interventions on the rivers, especially the construction respectively of a dam and a check dam along their lower courses, that trap of most of their solid load, affecting so adversely the sediment budget of the river mouths areas and adjacent beaches. Overall data acquired on the recent shoreline evolution and modern shoreline dynamics of the Molise coast and on related causal factors provide a good basic knowledge for regional coastal management purposes, and for further scientific purposes. Particularly, they suggest the opportunity to deepen a number of aspects such as the relationship between the coast and river catchments feeding it, the possible influences on the Molise shoreline dynamics of the neighbouring coasts, the efficiency/obsolescence of defense structures and the present-day vulnerability to coastal erosion of the Molise coast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.