Abstract
Sediment deposition and storage are important functions of forested bottomlands, yet documentation and interpretation of sedimentation processes in these systems remain incomplete. Our study was located in the central Atchafalaya Basin, Louisiana, a distributary of the Mississippi River and contains the largest contiguously forested riparian wetland in North America, which suffers from high sedimentation in some areas and hypoxia in others. We established 20 floodplain transects reflecting the distribution of depositional environments within the central Basin and monitored general and local sediment deposition patterns over a three-year period (2000-2003). Deposition rate, sediment texture, bulk density, and loss on ignition (LOI, percent organic material) were determined near or just above artificial markers (clay pads) located at each station per transect. Transect mean sedimentation rates ranged from about 2 to 42 mm/yr, mean percent organic material ranged from about 7% to 28% ,m ean percent sand (. 63 m) ranged from about 5% to 44%, and bulk density varied from about 0.4 to 1.3. The sites were categorized into five statistically different clusters based on sedimentation rate; most of these could be characterized by a suite of parameters that included hydroperiod, source(s) of sediment-laden water, hydraulic connectivity, flow stagnation, and local geomorphic setting along transect (levee versus backswamp), which lead to distinct spatial sedimentation patterns. Sites with low elevation (long hydroperiod), high hydraulic connectivity to multiple sources of sediment-laden water, and hydraulic damming (flow stagnation) featured the highest amounts of sediment trapping; the converse in any of these factors typically diminished sediment trapping. Based on aerial extent of clusters, the study area potentially traps 6,720,000 Mg of sediment annually, of which, 820,000 Mg represent organic materials. Thus, the Atchafalaya Basin plays a substantial role in lowland sediment (and associated contaminant) storage, including the sequestration of carbon. Findings on local sedimentation patterns may aid in management of flow to control sediment deposition and reduce hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.