Abstract

Quantifying the coupled cycles of carbon and water is essential for exploring the response mechanisms of arid zone terrestrial ecosystems and for formulating a sustainable and practical solution to issues caused by climate change. Water use efficiency (WUE), one of the comprehensive indicators for assessing plant growth suitability, can accurately reflect vegetation’s dynamic response to changing climate patterns. This study assesses the spatio-temporal changes in WUE (ecosystem water use efficiency, soil water use efficiency, and precipitation water use efficiency) from 2000 to 2018 and quantifies their relationship with meteorological elements (precipitation, temperature, drought) and the vegetation index (NDVI). The study finds that the sensitivity of NDVI to WUE is highly consistent with the spatial law of precipitation. The εPre threshold range of different types of WUE is about 200 mm or 1600 mm (low-value valley point) and 300 mm or 1500 mm (high-value peak point), and the εTem threshold value is 3~6 °C (high-value peak point) and 9~12 °C (low-value valley point). The degree to which vegetation WUE is influenced by precipitation is positively correlated with its time lag, whereas the degree to which temperature influences vegetation is negatively correlated. The WUE time lag is very long in hilly regions and is less impacted by drought; it is quite short in plains and deserts, where it is substantially affected by drought. These findings may be of great significance in responding to the severe situation of increasingly scarce water resources and the deterioration of the ecological environment across Central Asia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call