Abstract

Polyoxometalates (POMs) have drawn significant attention on account of their structural designability, compositional diversity and great potential applications. As an indispensable branch of POMs, selenotungstates (SeTs) have been synthesized extensively. Some SeTs have been applied as sensing materials for detecting biomarkers (e.g., metabolites, hormones, cancer markers). To gain a comprehensive understanding of advancements in SeT-based sensing materials, we present an overview that encapsulates the sensing performances and mechanisms of SeT-based biosensors. SeT-based biosensors are categorized into electrochemical catalytic biosensors, electrochemical affinity biosensors, "turn-off" fluorescence biosensors and "turn-on" fluorescence biosensors. We anticipate the expansive potential of SeT-based biosensors in wearable and implantable sensing technologies, which promises to catalyze significant breakthroughs in SeT-based biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.