Abstract

At present aluminium-magnesium alloys are widely used in various engineering applications due to its light weight and superior properties. Joining is considered as one of the most complex phenomenon in various precision industries like aerospace, railway, automotive and marine structures because inflexible tolerances are required during different product assembly. The friction stir welding (FSW) of aluminium-magnesium of various grade has incited substantial scientific and industrial importance since it has a potency to transform the product with a good quality joint. The fabrication of such alloys is a challenging task through conventional fusion welding due to its various metallurgical concerns. Therefore, the present work is intended to summarize the recent progress in FSW of aluminium-magnesium alloys. Particular attention has been paid to microstructural evolution, phase transformation, recrystallization mechanism, material flow behaviour and how the process parameters influence the various mechanical properties and associated defects during FSW. Various experimental and numerical simulation results have been mentioned for weld property comparison. Finally, this work not only points out the prominent conclusions of the preceding research but also recommends the upcoming guidance concerning to fabrication of aluminium-magnesium alloys through FSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call