Abstract

The lack of fuels and the increasing pollution caused by fossil fuels have led to the quest for new efficient and clean energy. Hydrogen is recognized as an ideal substitute for conventional sources of energy. However, traditional methods for hydrogen storage have some disadvantages, so hydrogen has not been available for industrial or commercial use. Porous materials with high surface areas are actively being developed as promising candidates for hydrogen storage. Recent advances in the application of porous matrices with doped-metals have shown superiority over net porous materials in hydrogen storage. The progress towards hydrogen storage in these metal-doped materials is reviewed. A spillover effect, which enhances hydrogen storage using metal elements, is also discussed. Suggestions to the further enhancement of efficiency of hydrogen storage are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call