Abstract
As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimization, becomes vital for successfully shaping the future energy-absorption structure. Physical impacting test and numerical simulation are the main methods to study the crashworthiness of railway vehicles at present. The end collision deformation area of the train can generally be divided into two kinds of structural design forms: integral absorbing structure design form and specific energy absorbing structure design form, and different energy-absorption structures introduced in this article can be equipped on different railway vehicles, so as to meet the balance of crashworthiness and economy. In pursuit of improving the capacity of energy dissipation in energy-absorption structures, studies are increasingly investigating multistage energy absorption systems, searching breakthrough when the energy dissipation capacity of the energy-absorption structure reaches its limit. In order to minimize injuries, a self-protective posture for occupants is also studied. Despite the abundance of energy-absorption structure research methods to-date, the problems of analysis and prediction during impact are still scarce, which is constituting one of many key challenges for the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.