Abstract

For many years, transcutaneous energy transfer (TET) systems have been developed for energizing total artificial heart systems. Although such a basic system can be developed without too much design effort, optimization toward high power transfer efficiency forces the introduction of novel system topologies and design strategies. In addition, for medical applications, the thermal impact of a TET system on the biological tissue should be taken into account, resulting in limitations on usable coil geometries. This article presents a TET system that has been developed for a power transfer of 25 W over a distance of 1 cm with minimal dimensions of 1 x 6 x 4 cm for the external driver and 5 x 3 x 1 cm for the internal electronics. The coil geometries have a thickness of 2 mm and a diameter of 6 cm. An overall system efficiency of 80% was achieved for an internal load of 25 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.