Abstract

AbstractLaser cleaning has emerged to effectively remove contaminants from solid surfaces. In this paper, recent progress on laser cleaning has been studied. First, a cleaning model is established for removal of particles from substrate surfaces. The model not only explains the influence of fluence on cleaning efficiency, but also predicts the cleaning thresholds. Following that, the optical resonance and near field effect are discussed for transparent particles with a size of α ∼ λ (radiation wavelength) which strongly influences the intensity distribution in the contacted area (substrate surface). The characterization of ejected particles during laser cleaning is finally investigated. It is found that the particle distribution curves closely fit to Gaussian curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.