Abstract
Solid-state lithium metal batteries (SSLMBs) offer numerous advantages in terms of safety and theoretical specific energy density. However, their main components namely lithium metal anode, solid-state electrolyte, and cathode, show chemical instability when exposed to humid air, which results in low capacities and poor cycling stability. Recent studies have shown that bioinspired hydrophobic materials with low specific surface energies can protect battery components from corrosion caused by humid air. Air-stable inorganic materials that densely cover the surface of battery components can also provide protection, which improves the storage stability of the battery components, broadens their processing conditions, and ultimately decreases their processing costs while enhancing their safety. In this review, the mechanism behind the surface structural degradation of battery components and the resulting consequences are discussed. Subsequently, recent strategies are reviewed to address this issue from the perspectives of lithium metal anodes, solid-state electrolytes, and cathodes. Finally, a brief conclusion is provided on the current strategies and fabrication suggestions for future safe air-stable SSLMBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.