Abstract
This paper is a survey about recent progress on submersive morphisms of schemes combined with new results that we prove. They concern the class of quasicompact universally subtrusive morphisms that we introduced about 30 years ago. They are revisited in a recent paper by Rydh, with substantial complements and key results. We use them to show Artin-Tate-like results about the 14th problem of Hilbert, for a base scheme either Noetherian or the spectrum of a valuation domain. We look at faithfully flat morphisms and get “almost” Artin-Tate-like results by considering the Goldman (finite type) points of a scheme. Bjorn Poonen recently proved that universally closed morphisms are quasicompact. By introducing incomparable morphisms of schemes, we are able to characterize universally closed surjective morphisms that are either integral or finite. Next we consider pure morphisms of schemes introduced by Mesablishvili. In the quasicompact case, they are universally schematically dominant morphisms. This leads us to a characterization of universally subtrusive morphisms by purity. Some results on the schematically dominant property are given. The paper ends with properties of monomorphisms and topological immersions, a dual notion of submersions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.