Abstract

NO2 gas surface acoustic wave (SAW)sensors are under continuous development due to their high sensitivity, reliability, low cost and room temperature operation. Their integration ability with different receptor nanomaterials assures a boost in the performance of the sensors. Among the most exploited nano-materials for sensitive detection of NO2 gas molecules are carbon-based nanomaterials, metal oxide semiconductors, quantum dots, and conducting polymers. All these nanomaterials aim to create pores for NO2 gas adsorption or to enlarge the specific surface area with ultra-small nanoparticles that increase the active sites where NO2 gas molecules can diffuse. This review provides a general overview of NO2 gas SAW sensors, with a focus on the different sensors’ configurations and their fabrication technology, on the nanomaterials used as sensitive NO2 layers and on the test methods for gas detection. The synthesis methods of sensing nanomaterials, their functionalization techniques, the mechanism of interaction between NO2 molecules and the sensing nanomaterials are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.