Abstract

In less than three years, the photovoltaic community has witnessed a rapid emergence of a new class of solid‐state heterojunction solar cells based on solution‐processable organometal halide perovskite absorbers. The energy conversion efficiency of solid‐state perovskite solar cells (PSCs) has been quickly increased to a certified value of 20.1% by the end of 2014 because of their unique characteristics, such as a broad spectral absorption range, large absorption coefficient, high charge carrier mobility and diffusion length. Here, the focus is specifically on recent developments of hole‐transporting materials (HTMs) in PSCs, which are essential components for achieving high solar cell efficiencies. Some fundamentals with regard to PSCs are first presented, including the history of PSCs, device architectures and general operational principles of PSCs as well as various techniques developed for the fabrications of uniform and dense perovskite complexes. A broad range of the state‐of‐the‐art HTMs being used in PSCs are then discussed in detail. Finally, an outlook on the design of more efficient HTMs for highly efficient PSCs is addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.