Abstract

Energy harvesting devices have emerged as a promising technology to not only meet global energy demands but also power biomedical electronics. The dramatic advancement in self-powered biomedical electronics used for monitoring and treatment of severe diseases is part of a paradigm shift that is on the horizon. The review paper highlights recent progress on energy harvesters for scavenging energy to realize self-powered systems. The emphasis is mainly on piezoelectric and triboelectric nanogenerators addressing the basic operating principle, electrical model, design techniques, newly developed materials and their performance as well as associated typical applications. Herein, piezoelectric devices have been compared on basis of their materials, energy conversion efficiency, piezoelectric coefficient and power harvesting circuit. In addition, the recent advances of hybrid nanogenerators in terms of its biomedical applications are also highlighted. Finally, the conclusions and future prospects towards self-powered systems for implantable and wearable medical electronic devices are discussed for effective health monitoring, bio-sensing and clinical therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call