Abstract

A dispersion interferometer (DI) is known to be less sensitive to mechanical vibrations, which is one of the main sources of error for conventional interferometers. A simple optical configuration is also one of the advantages of the DI approach. Since the first application of a homodyne DI on a nuclear fusion plasma device in the 1990s, several interferometer techniques have improved the operation of the DI. Improvements in nonlinear crystals have also improved the performance and availability of the DI. Immunity to neutral gas density changes, which is needed for low-temperature plasma measurements, is also found. A remaining challenge is the suppression of the offset drifts, which can be significant. Recent studies confirmed that they are caused by ambient humidity changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.