Abstract
PurposeBumpless Cu/SiO2 hybrid bonding, which this paper aims to, is a key technology of three-dimensional (3D) high-density integration to promote the integrated circuits industry’s continuous development, which achieves the stacks of chips vertically connected via through-silicon via. Surface-activated bonding (SAB) and thermal-compression bonding (TCB) are used, but both have some shortcomings. The SAB method is overdemanding in the bonding environment, and the TCB method requires a high temperature to remove copper oxide from surfaces, which increases the thermal budget and grossly damages the fine-pitch device.Design/methodology/approachIn this review, methods to prevent and remove copper oxidation in the whole bonding process for a lower bonding temperature, such as wet treatment, plasma surface activation, nanotwinned copper and the metal passivation layer, are investigated.FindingsThe cooperative bonding method combining wet treatment and plasma activation shows outstanding technological superiority without the high cost and additional necessity of copper passivation in manufacture. Cu/SiO2 hybrid bonding has great potential to effectively enhance the integration density in future 3D packaging for artificial intelligence, the internet of things and other high-density chips.Originality/valueTo achieve heterogeneous bonding at a lower temperature, the SAB method, chemical treatment and the plasma-assisted bonding method (based on TCB) are used, and surface-enhanced measurements such as nanotwinned copper and the metal passivation layer are also applied to prevent surface copper oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.