Abstract

In recent decades, chemiresistive gas sensors (CGS) have been widely studied due to their unique advantages of expedient miniaturization, simple fabrication, easy operation, and low cost. As one ubiquitous interference factor, humidity dramatically affects the performance of CGS, which has been neglected for a long time. With the rapid development of technologies based on gas sensors, including the internet of things (IoT), healthcare, environment monitoring, and food quality assessing, the humidity interference on gas sensors has been attracting increasing attention. Inspiringly, various anti-humidity strategies have been proposed to alleviate the humidity interference in this field; however, comprehensive summaries of these strategies are rarely reported. Therefore, this review aims to summarize the latest research advances on humidity-independent CGS. First, we discussed the humidity interference mechanism on gas sensors. Then, the anti-humidity strategies mainly including surface engineering, physical isolation, working parameters modulation, humidity compensation, and developing novel gas-sensing materials were successively introduced in detail. Finally, challenges and perspectives of improving the humidity tolerance of gas sensors were proposed for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.