Abstract
This review is the current summary of vitamin B6 (B6) biosynthesis in Escherichia coli and other microorganisms. The de novo biosynthesis of B6 has been studied extensively for last three decades. However, the de novo biosynthesis of B6 still remains unclear in spite of its simple structure. For the first two decades, B6 biosynthesis had been mainly studied with E. coli using genetic, nutritional, and isotopic labeling experiments. According to these studies, some compounds including glycolaldehyde were identified as the precursor. During the last decade, gene manipulate techniques were rapidly developed, and complete genome sequences of some microorganisms became available. Using these new tools, valuable information has been provided. The complete DNA sequence of pdx genes and other genes, which are possibly involved in B6 biosynthesis, were shown. The roles of some genes and precursors were proposed. Besides E. coli, B6 biosynthesis in other microorganisms has been also studied. In some microorganisms, snz/sno was reported to be involved in B6 biosynthesis. Intriguingly these genes show no similarity to any of the E. coli pdx genes, and are not found in E. coli. Microorganisms having snz/sno gene homologues lack homologues to pdxA/pdxJ genes, whereas those with homologues to pdxA/pdxJ lack snz/sno gene homologues. Therefore, it is most likely that there are at least two kinds of B6 biosynthetic pathways in microorganisms. These studies provided important clues of B6 biosynthesis, but the entire picture of the B6 biosynthetic pathway remains unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.