Abstract
Semiconductor-based solar water splitting is regarded as one of the most promising technologies for clean hydrogen production. The rational design of semiconductor materials is critically important to achieve high solar-to-hydrogen (STH) conversion efficiencies towards practical applications. A rich family of tungsten- and molybdenum-based materials have been developed as both photocatalysts and cocatalysts for solar-hydrogen production in the past years, providing more opportunities to achieve high solar-to-hydrogen (STH) efficiencies. In this review article, we comprehensively review the recent progress of tungsten- and molybdenum-based materials for solar-hydrogen production. In particular, the strengths and drawbacks of each material system are critically discussed, followed by an overview of the emerging strategies to improve their performances. Finally, the key challenges and possible research directions of tungsten- and molybdenum-based materials are presented, which would provide useful information for the design of efficient semiconductor materials for solar-hydrogen production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.