Abstract

The recent progress of indoor organic photovoltaics (IOPVs) is reviewed in this work for abundant low power consumption applications. In recent years, organic solar cells have attracted significant attention to harvest solar energy. However, many drawbacks of such as discontinuous adequate sunlight, heat instability, and strong illumination instability inhibit outdoor organic photovoltaic technology from entering solar panel market. As the market of IoT nodes (e.g. sensors, watches, calculators, remote control, hearing aid, and monitors) used in relatively mild indoor environment rapidly grows, the demand for artificial light energy harvesters to supply continuous and cordless power for the indoor environment has emerged. Organic photovoltaic technology for indoor harvesters is one of the reliable candidates because the energy level of organic materials is tunable to match the indoor light source spectra so that its power conversion efficiency (PCE) outweighs that of most of the other indoor harvesters. Indoor organic photovoltaics exhibit the PCE over 30% with an output power of 150 μ W cm − 2 under the illuminance of artificial lights, which is high enough to drive numerous indoor applications. This review summarizes the performance mechanism of organic photovoltaics (OPVs) when the illuminance is switched from 1-sun to dim light, the research progress for indoor energy transformation, and the viewpoint to speed up the development of IOPVs. • Recent progress and trends in indoor organic photovoltaics (IOPVs) are discussed. • The mechanism of how to achieve highly efficient IOPVs when the illuminance is switched from 1-sun to dim light. • The method of IOPVs performance characterization is outlined. • Power conversion efficiency (PCE) of IOPV technology outweighs that of all the other types of indoor energy harvester. • A brief summary with current challenges and future perspectives are discussed in order to speed up the development of IOPVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.