Abstract
The increasing demands for wearable electronics have stimulated the rapid development of flexible energy storage devices. MXenes are considered as promising flexible electrodes due to the ultrahigh volumetric specific capacitance, metallic conductivity, superior hydrophily, and rich surface chemistry. This work reviews, for the first time, the recent advances of MXene‐based nanomaterials in flexible energy storage devices, including pure MXenes, MXene‐carbon composites, MXene‐metal oxide composites, and MXene‐polymer composites. Applications of MXenes in flexible electronics such as sensors, nanogenerators, and electromagnetic interference shielding are also included. Then, properties of stress, strain, conductivity, and capacitance are compared to help researchers to keep balance between mechanical and electrochemical performances in designing flexible devices. Finally, challenges together with the possible solutions related to the application of MXenes in flexible devices and outlook to future directions are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.