Abstract
With the rapid growth of electronic and optoelectronic industry, the demand for crystal materials increased dramatically for the past two decades. The requirement for better, cheaper, and larger single crystals has driven extensive research and development in crystal growth. To understand the interplay of associated transport processes and phase transformation, as well as to provide a design basis, crystal growth modeling is becoming more important in both fundamentals and practice. In this article, we review some recent progress of numerical modeling in crystal growth through three subjects: (1) hot-zone design, (2) active growth control, and (3) morphological simulation. Examples are given through our research results in recent years. For better illustration and process understanding some visualization results using transparent materials are given. The needs and the challenges ahead for crystal growth modeling are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.