Abstract

Within the last decade, photoconductive terahertz (THz) systems have become well-established tools in scientific laboratories and industrial R&D departments. In particular, the exploitation of telecommunication technology around 1.5 μm wavelength enabled this development. Continuous wave (cw) THz systems benefit especially from telecom technology since the required optical components are already available. As no femtosecond fiber-laser is needed, photonic integration may lead to extremely compact cw THz devices. We present a fully fiber-coupled cw THz system in combination with optimized InGaAs-based emitter and detector antennas and an optical phase modulator. This system can be employed as both, a highly precise spectroscopic tool and a high-speed measurement system for non-destructive testing. In addition, we present recent results on heterodyne cw THz spectroscopy. This is a prerequisite for future broadband, wireless telecommunication systems using THz carrier frequencies. The fiber-coupled heterodyne receiver is able to detect THz signals up to 1 THz with an intermediate frequency of 2.2 GHz. These are the highest values reported for photoconductive heterodyne receivers so far.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.