Abstract

Motion is a basic behavioral attribute of organisms, and it is a behavioral response of organisms to the external environment and internal state changes. Materials with switchable mechanical properties are widespread in living organisms and play crucial roles in the motion of organisms. Therefore, significant efforts have been made toward mimicking such architectures and motion behaviors by making full use of the properties of stimulus-responsive materials to design smart materials/machines with specific functions. In recent years, the biomimetic motions based on micro/nanomotors, actuators and soft robots constructed from smart response materials have been developed gradually. However, a comprehensive discussion on various categories of biomimetic motions in this field is still missing. This review aims to provide such a panoramic overview. From nano-to macroscales, we summarize various biomimetic motions based on micro/nanomotors, actuators and soft robotics. For each biomimetic motion, we discuss the driving modes and the key functions. The challenges and opportunities of biomimetic motions are also discussed. With rapidly increasing innovation, advanced, intelligent and multifunctional biomimetic motions based on micro/nanomotors, actuators and soft robotics will certainly bring profound impacts and changes for human life in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.