Abstract
During the last few decades, rare isotope beam facilities have provided unique data for studying the properties of nuclides located far from the beta-stability line. Such nuclei are often accompanied by exotic structures and radioactive modes, which represent the forefront of nuclear research. Among them, two-proton (2p) radioactivity is a rare decay mode found in a few highly proton-rich isotopes. The 2p decay lifetimes and properties of emitted protons hold invaluable information regarding the nuclear structures in the presence of a low-lying proton continuum; as such, they have attracted considerable research attention. In this review, we present some of the recent experimental and theoretical progress regarding the 2p decay, including technical innovations for measuring nucleon–nucleon correlations and developments in the models that connect their structural aspects with their decay properties. This impressive progress should play a significant role in elucidating the mechanism of these exotic decays, probing the corresponding components inside nuclei, and providing deep insights into the open quantum nature of dripline systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.