Abstract

Graphene-like 2D nanomaterials, such as graphene, MXene, molybdenum disulfide, and boron nitride, present a promising avenue for eco-friendly flame retardants. Their inherent characteristics, including metal-like conductivity, high specific surface area, electron transport capacity, and solution processability, make them highly suitable for applications in both structural fire protection and fire alarm systems. This review offers an up-to-date exploration of advancements in flame retardant composites, utilizing pristine graphene-like nanosheets, versatile graphene-like nanosheets with multiple functions, and collaborative systems based on these nanomaterials. Moreover, graphene-like 2D nanomaterials exhibit considerable potential in the development of early fire alarm systems, enabling timely warnings. This review provides an overview of flame-retarding and fire-warning mechanisms, diverse multifunctional nanocomposites, and the evolving trends in the development of fire alarm systems anchored in graphene-like 2D nanomaterials and their derivatives. Ultimately, the existing challenges and prospective directions for the utilization of graphene-like 2D nanomaterials in flame retardant and fire-warning applications are put forward.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.