Abstract

Synchrotron-based X-ray techniques, such as Diffraction and Absorption Spectroscopy (XAS), can be readily employed to study catalysts in action, thereby offering great potential for revealing the mechanism and behaviour of catalytic solids both during preparation and reaction. The continued advancement of X-ray generation and collection mean that it is now possible to obtain high quality data from catalysts under reaction conditions with second/sub-second time resolution. In this paper, we describe in detail a specific setup which can be used to obtain transmission in situ data. It is able to mimic industrial preparation/reaction environments and has been developed to such an extent that such measurements are now routine. To illustrate its applicability, we present time-resolved diffraction data obtained from an iron molybdate-based catalyst under pseudo industrial operating conditions revealing its bulk solid-state chemistry and stability, and further show how the catalyst behaviour changes as a function of the Fe/Mo ratio. We also illustrate the versatility of this setup in obtaining data using simultaneous multiple techniques (including non-X-ray-based methods, e.g. UV–vis) from an iron molybdate catalyst under methanol/air-flow. We conclude with a brief outlook towards the future, in which we identify new possibilities for studying catalysts in action which could yield insight into their preparation and behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call