Abstract

As we all know, organic phosphorus compounds have high application values in chemical industries. Compared with traditional compounds with P-X (X = Cl, Br, I) and P-H bonds, phosphorylation reagents containing P(O)-OH bonds are stable, environmentally friendly, and inexpensive. However, in recent years, there have been few studies on the selective functionalization of P(O)-OH bonds for the fabrication of P-C and P-Z bonds. In general, four-coordinated P(O)-OH compounds have reached coordination saturation due to the phosphorus atom center, but cannot evolve the phosphorus coordination center through intra-molecular tautomerization; however, the weak coordination effects between the P=O bond and transition metals can be utilized to activate P(O)-OH bonds. This review highlights the most important recent contributions toward the selective functionalization of P(O)-OH bonds via cyclization/cross coupling/esterification reactions using transition metals or small organic molecules as the catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.