Abstract

Solid-state lasers play a significant role in providing the technology necessary for active remote sensing of the atmosphere. Neodymium-doped yttria (Nd:Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) is considered to be an attractive material due to its possible lasing wavelengths of ~914 and ~946 nm for ozone profiling. These wavelengths, when frequency tripled, can generate ultraviolet (UV) light at ~305 and ~315 nm, which is particularly useful for ozone sensing using differential absorption light detection and ranging (LIDAR) technique. For practical realization of space-based UV transmitter technology, ceramic Nd:Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> material is considered to possess a great potential. A plasma melting and quenching method has been developed to produce Nd3 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+-</sup> doped powders for consolidation into Nd: Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ceramic laser materials. This far-from-equilibrium processing methodology allows higher levels of rare earth doping than can be achieved by equilibrium methods. The method comprises two main steps: 1) plasma melting and quenching to generate dense, and homogeneous doped metastable powders and 2) pressure-assisted consolidation of these powders by hot isostatic pressing to make dense nanocomposite ceramics. Using this process, several in 1times1 ceramic cylinders have been produced. The infrared transmission of a 2-mm-thick undoped Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ceramic was as high as ~75% without antireflection coating. In the case of Nd:Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> , ceramics infrared transmission values of ~50% were achieved for a similar sample thickness. Furthermore, Nd:Y <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> samples with dopant concentrations of up to ~2 at.% were prepared without significant emission quenching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call