Abstract

Adenosine receptors belong to the family of G protein-coupled receptors. Four distinct subtypes are known, termed A(1), A(2A), A(2B) and A(3). Adenosine is an important signaling molecule which is released under inflammatory conditions. It can show antiinflammatory as well as proinflammatory activities, and the contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. Agonists selective for adenosine A(1) receptors show antinociceptive activity and are active in animal models of neuropathic and inflammatory pain. Adenosine A(2A) receptor agonists are potent antiinflammatory drugs. A(2A)-selective antagonists have shown antihyperalgesic activity in animal models of inflammatory pain. For A(2B)agonists as well as A(2B) antagonists antiinflammatory activity has been postulated. Selective A(2B) antagonists were shown to decrease (inflammatory) pain, and are promising candidates for the treatment of asthma. Adenosine A(3) receptor agonists appear to be proinflammatory, while there is evidence for an antiinflammatory effect of A(3) antagonists. There are some contradictory findings, and A(3) agonists are being developed for the treatment of inflammatory diseases such as arthritis. Indirect mechanisms increasing the extracellular concentration of adenosine using adenosine kinase inhibitors, adenosine deaminase inhibitors or adenosine uptake inhibitors, or increasing the potency of adenosine at the A(1) receptor subtype by allosteric modulators lead to potent antinociceptive and antiinflammatory activity. The advantage of indirectly acting drugs may be their site- and event-specific action since they are only active where adenosine has been released. In the past decade considerable progress has been made towards the identification of novel lead structures and the development of potent and selective ligands for all four adenosine receptor subtypes. A large number of patents has recently been filed and the field is finally in the process of translating many years of basic science into therapeutic application. This review article will focus on compounds published or patented within the past three years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.