Abstract

Featuring an absence of dangling bonds, large band gap, low dielectric constant, and excellent chemical inertness, atomically thin hexagonal boron nitride (h-BN) is considered an ideal candidate for integration with graphene and other 2D materials. During the past years, great efforts have been devoted to the research of h-BN-based heterostructures, from fundamental study to practical applications. In this review we summarize the recent progress in the synthesis, novel properties, and potential applications of h-BN-based heterostructures, especially the synthesis technique. Firstly, various approaches to the preparation of both in-plane and vertically stacked h-BN-based heterostructures are introduced in detail, including top-down strategies associated with exfoliation transfer processes and bottom-up strategies such as chemical vapor deposition (CVD)-based growth. Secondly, we discuss some novel properties arising in these heterostructures. Several promising applications in electronic and optoelectronic devices are also reviewed. Finally, we discuss the main challenges and possible research directions in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call