Abstract

Impurity–helium (Im–He) solids are porous materials formed inside superfluid 4He by nanoclusters of impurities injected from the gas phase. The results of studies of these materials have relevance to soft condensed matter physics, matrix isolation of free radicals and low temperature chemistry. Recent studies by a variety of experimental techniques, including CW and pulse ESR, X-ray diffraction, ultrasound and Raman spectroscopy allow a better characterization of the properties of Im–He solids. The structure of Im–He solids, the trapping sites of stabilized atoms and the possible energy content of the samples are analyzed on the basis of experimental data. The kinetics of exchange tunneling reactions of hydrogen isotopes in nanoclusters and the changes of environment of the atoms during the course of these reactions are reviewed. Analysis of the ESR data shows that very large fraction of the stabilized atoms in Im–He solids reside on the surfaces of impurity nanoclusters. The future directions for studying Im–He solids are described. Among the most attractive are the studies of Im–He solids with high concentrations of stabilized atoms at ultralow (10–20 mK) temperature for the observation of new collective quantum phenomena, the studies of practical application of Im–He solids as a medium in neutron moderator for efficient production of ultracold (∼1 mK) neutrons, and the possibilities of obtaining high concentration of atomic nitrogen embedded in N2 clusters for energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.