Abstract

Ultrawide bandgap (UWBG) semiconductors, including Ga2O3, diamond, Al x Ga1-x N/AlN, featuring bandgaps greater than 4.4 eV, hold significant promise for solar-blind ultraviolet photodetection, with applications spanning in environmental monitoring, chemical/biological analysis, industrial processes, and military technologies. Over recent decades, substantial strides in synthesizing high-quality UWBG semiconductors have facilitated the development of diverse high-performance solar-blind photodetectors (SBPDs). This review comprehensively examines recent advancements in UWBG semiconductor-based SBPDs across various device architectures, encompassing photoconductors, metal-semiconductor-metal photodetectors, Schottky photodiodes, p-n (p-i-n) photodiodes, phototransistors, etc., with a systematic introduction and discussion of their operational principles. The current state of device performance for SBPDs employing these UWBG semiconductors is evaluated across different device configurations. Finally, this review outlines key challenges to be addressed, aiming to steer future research endeavors in this critical domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.