Abstract

Electronic skin (e-skin), new generation of flexible wearable electronic devices, has characteristics including flexibility, thinness, biocompatibility with broad application prospects, and a crucial place in future wearable electronics. With the increasing demand for wearable sensor systems, the realization of multifunctional e-skin with low power consumption or even autonomous energy is urgently needed. The latest progress of multifunctional self-powered e-skin for applications in physiological health, human-machine interaction (HMI), virtual reality (VR), and artificial intelligence (AI) is presented here. Various energy conversion effects for the driving energy problem of multifunctional e-skin are summarized. An overview of various types of self-powered e-skins, including single-effect e-skins and multifunctional coupling-effects e-skin systems is provided, where the aspects of material preparation, device assembly, and output signal analysis of the self-powered multifunctional e-skin are described. In the end, the existing problems and prospects in this field are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.