Abstract

Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.

Highlights

  • Mycotoxins are secondary metabolites produced by different species of filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, etc. [1,2,3]

  • Rapid determination methods based on biorecognition elements have been presented as promising tools for monitoring of mycotoxin contamination in food samples, which is a powerful supplement to highly sophisticated instrumental methods

  • Tremendous efforts have been dedicated over the last decade to develop receptors with further enhanced specificity, binding affinity, stability, and lower cost via improved antigen design, optimized screening strategies, expression or synthesis methods, and integration of new computational modeling approaches [411,412,413]

Read more

Summary

Introduction

Mycotoxins are secondary metabolites produced by different species of filamentous fungi, including Aspergillus, Fusarium, Penicillium, Alternaria, Claviceps, etc. [1,2,3]. More than 400 mycotoxins with diverse structures have been identified, a limited number of compounds are considered a problem in food and feed safety These include aflatoxins (AFs) [10,11], ochratoxin A (OTA) [12,13], fumonisins (FMs) [14], T-2/HT-2 toxins [15,16], deoxynivalenol (DON) [17,18], zearalenone (ZEN) [19,20], citrinin (CIT) [21], patulin (PAT) [22,23], and ergot alkaloids (EAs) [24,25] due to their significant prevalence in food and feed and severe health risks to humans and animals.

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.