Abstract

Two-dimensional metal chalcogenides (2D MCs) present a great opportunity for overcoming the size limitation of traditional silicon-based complementary metal-oxide-semiconductor (CMOS) devices. Controllable modulation compatible with CMOS processes is essential for the improvement of performance and the large-scale applications of 2D MCs. In this review, we summarize the recent progress in plasma modification of 2D MCs, including substitutional doping, defect engineering, surface charge transfer, interlayer coupling modulation, thickness control, and nano-array pattern etching in the fields of electronic devices and optoelectronic devices. Finally, challenges and outlooks for plasma modulation of 2D MCs are presented to offer valuable references for future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.