Abstract

Molecular population genetics is not only one of the most important subjects of evolutionary biology, but also the basics subject of breeding, association mapping, and linkage analysis. Molecular population genetics has been developed from the classical population genetics aiming at studying population genetic structure and the factors that affect the population genetic structure by investigating the variation of DNA sequences. Therefore, population evolving history can be deduced accurately and quantitatively for evaluating the former conclusions about long-term evolution and the stability of genetic systems. Thus, molecular population genetics can avoid the shortcomings of classical population genetics, i.e. limiting to deduce the short evolving history of a population. Moreover, understanding of molecular variation patterns leads to further evaluation of the evolution theory, which is based on "Natural Selection" and introduced by Darwin. Molecular population genetics has made great progress and revealed many important scientific issues, such as the pattern of DNA polymorphism, the level of linkage disequilibrium, demographical history, and the genetic forces affecting gene evolvement. Furthermore, new research areas have been developed from molecular population genetics and become the hot fields, such as molecular phylogeography. In this review, we summarized studies and progresses of plant molecular population genetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call