Abstract

Third-generation organic light-emitting diodes (OLEDs) based on metal-free thermally activated delayed fluorescent (TADF) materials have sparked tremendous interest in the last decade due to their nearly 100% exciton utilization efficiency, which can address the low-efficiency issue of the first-generation fluorescent emitters and the high-cost issue of the second-generation organometallic phosphorescent emitters. Construction of efficient and stable TADF-OLEDs requires utilizing TADF materials with a narrow singlet-triplet energy gap (ΔEST), high photoluminescence quantum yield (PLQY) and short TADF lifetime. A small ΔEST is necessary for an efficient reverse intersystem crossing (RISC) process, which can be achieved through theeffective spatial separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). TADF emitters have been generally designed as intramolecular charge transfer (ICT) molecules with highly twisted donor-acceptor (D-A) molecular architectures. A wide variety of combinations of electron donors and acceptors have been explored. In this review, we shall focus on recent progress in organic TADF molecules incorporating strong electron-donor phenoxazine moiety and their application as emitting layer (EML) in OLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call