Abstract

The distributed sensor is proven to be a powerful tool for civil structural and material process monitoring. Brillouin scattering in fiber can be used as point sensors or distributed sensors for measurement of temperature, strain, birefringence and vibration over centimeters (Brillouin grating length) for point sensor or the pulse length for the distributed sensor. Simultaneous strain and temperature measurement with a spatial resolution of 20 cm is demonstrated in a Panda fiber using Brillouin grating technique with the temperature accuracy and strain accuracy of 0.4 °C and 9 μɛ. This technique can also be used for distributed birefringence measurement. For Brillouin optical time domain analysis (BOTDA), we have developed a new technique to measure differential Brillouin gain instead of Brillouin gain itself. This technique allows high precision temperature and strain measurement over long sensing length with sub-meter spatial resolution: 50-cm spatial resolution for 50-km length, using return-to-zero coded optical pulses of BOTDA with the temperature resolution of 0.7 °C, which is equivalent to strain accuracy of 12 μɛ. For over 50-km sensing length, we proposed and demonstrated frequency-division-multiplexing (FDM) and time-division-multiplexing (TDM) based BOTDA technique for 75-km and 100-km sensing length without inline amplification within the sensing length. The spatial resolution of 2 m (100 km) and Brillouin frequency shift accuracy of 1.5 MHz have been obtained for TDM based BOTDA and 1-m resolution (75 km) with Brillouin frequency shift accuracy of 1 MHz using FDM based BOTDA. The civil structural health monitoring with BOTDA technique has been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.