Abstract

Traditional π-conjugated luminescent macromolecules typically suffer from aggregation-caused quenching (ACQ) and high cytotoxicity, and they require complex synthetic processes. In contrast, nonconventional luminescent macromolecules (NCLMs) with nonconjugated structures possess excellent biocompatibility, ease of preparation, unique luminescence behavior, and emerging applications in optoelectronics, biology, and medicine. NCLMs are currently believed to produce inherent luminescence due to through-space conjugation of overlapping electron orbitals in solid/aggregate states. However, as experimental facts continue to exceed expectations or even overturn some previous assumptions, there is still controversy about the detailed luminous mechanism of NCLMs, and extensive studies are needed to further explore the mechanism. This Perspective highlights recent progress in NCLMs and classifies and summarizes these advances from the viewpoint of molecular design, mechanism exploration, applications, and challenges and prospects. The aim is to provide guidance and inspiration for the huge fundamental and practical potential of NCLMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.